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Abstract— Simultaneous Localization and Mapping (SLAM)
suffers from a quadratic space and time complexity per update
step. Recent advancements have been made in approximating
the posterior by forcing the information matrix to remain sparse
as well as exact techniques for generating the posterior in the
full SLAM solution to both the trajectory and the map. Current
approximate techniques for maintaining an online estimate of
the map for a robot to use while exploring make capacity-
based decisions about when to split into sub-maps. This paper
will describe an alternative partitioning strategy for online
approximate real-time SLAM which makes use of normalized
graph cuts to remove less information from the full map.

I. INTRODUCTION

The problem of Simultaneous Localization and Mapping

(SLAM) has seen a flurry of publication over the past decade.

Many of the core issues have been addressed in a research

setting, yet a viable general-purpose implementation remains

elusive. The absence of a general purpose reliable SLAM

module is due to two main issues in moving from the

research environment to the real world. The first main issue,

which will be addressed in this paper, is the quadratic update

complexity inherent in maintaining a fully dense covariance

or information matrix. The second issue, which will be

peripherally discussed in this paper, is the data association

problem – if even a single feature is mistakenly confused for

another, the entire map can be rendered inconsistent.

Most modern approaches to solving the SLAM problem

follow one of two main themes. One approach stems from

advancements made on the Structure from Motion (SFM)

problem in the computer vision community. This approach is

to optimize the representation of the perceived environment

in an offline manner. This has been applied in robotics as

the Smoothing and Mapping (SAM) problem [12], which is

also known as full SLAM because the entire robot trajectory

is optimized along with the landmark poses. The original

approach from the robotics community has been to use

a recursive filter algorithm to marginalize past poses in

the interest of real-time operation, but at the expense of

correlating all map features.

The original approach to the SLAM problem is to up-

date a state vector and covariance matrix composed of the

robot pose and the estimated landmark positions with the

Extended Kalman Filter (EKF). This technique evolved out

of the original successful application of the EKF for mobile

robot localization with an a priori map in [7] and [5]. By
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placing the estimated landmark locations within the state

vector and updating them simultaneously, the first SLAM

implementation was reported by [25]. The recent summary

papers by Durrant-Whyte and Bailey [13], [1] serve as an

excellent survey of the history of the SLAM problem, from

its initial beginnings up to the state-of-the-art today.

The full SLAM, or Smoothing and Mapping (SAM)

problem allows for the use of a sparse representation for

the covariance or information matrix by maintaining the

entire robot trajectory within the state vector. Features are

correlated when prior poses are marginalized out, in effect,

the EKF does this with every prior pose and correlates all

features resulting in a dense covariance matrix. Folkesson

and Christensen developed GraphSLAM [15], which was

able to close loops and avoided linearization error through

the use of a nonlinear optimization engine. Loop closure

was achieved by adding human-guided constraints between

features and then reoptimizing. Dellaert et. al. [12] has

developed the Square Root SAM algorithm which uses

sparse Cholesky factorization to optimize a set of landmark

measurements and the robot trajectory in an efficient manner.

Further progress has been made on online solutions to the

SAM problem which uses QR factorization for reordering

the measurements to get optimal and online or incremental

updates such as with incremental SAM (iSAM) [17], [18].

These algorithms represent excellent progress towards a

large-scale solution to the SLAM problem; however, each of

them requires an ever increasing amount of computation per

update step. EKF updates suffer from quadratic complexity

per update step, iSAM updates can be held to near linear

complexity per update step with proper reordering. Sub-

mapping strategies have been developed to approximate the

solution to the SLAM problem while maintaining constant

time update steps. This is accomplished by keeping the size

of the sub-map at no larger than a fixed maximum number

of features. Since the filter approximates the solution by

assuming that features in other maps are independent, it can

confine the update to the local map, which is smaller than a

constant maximum size.

Sub-mapping strategies such as Atlas [4] and Hierarchical

SLAM [14] maintain constant sized local maps and offer

loop closure updates which are linear in the size of the loop,

in terms of local map frames traversed. Other algorithms

postpone global updates until they are needed and focus on

local updates such as the Compressed EKF [16]. Techniques

within the SAM community such as Tectonic SAM [22]

are able to optimize sub-maps to generate exactly the same

results as full Square Root SAM but with the efficiency

of a constant sized map. Since each local map starts with
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the robot perfectly localized in these schemes, sub-maps

offer some protection against the data association ambiguities

in nearest-neighbor gating which would otherwise be more

difficult with larger pose uncertainties. Loop closure in sub-

map algorithms requires joint data association such as [21];

however, pose uncertainties are small enough within a local

map to permit nearest-neighbor gating. This is a significant

advantage for the visual SLAM technique used in this paper

which relies on low uncertainties to achieve real-time perfor-

mance while measuring visual features. These sub-mapping

strategies make fixed, capacity-based decisions about when

a sub-map should be made; this paper will demonstrate an

alternative strategy based on normalized graph cuts from the

image segmentation community which will provide a better

approximation to the full map.

Techniques such as [3] also use normalized graph cuts

to partition the maps, but they use a sensed-space overlap

metric, which is a spatial separation based on proximity. The

technique described in this paper is different in that it uses

an information sharing metric for its edge weights. This

technique uses a Hybrid Metric-Topological sub-mapping

data structure instead of Atlas as shown in [2].

This paper will develop an alternative sub-mapping strat-

egy by first discussing the theory behind the component

technologies in Section II. In Section III the specific software

implementation will be detailed, then in Section IV experi-

mental results will be presented. Section V draws conclusions

and briefly outlines the future direction of this work.

II. METHODOLOGY

This paper presents a new strategy for choosing partitions

in an Atlas framework based on normalized graph cuts from

the image segmentation community.The software described

in this paper uses Andrew Davison’s SceneLib [9], [10],

[8]1. The unified inverse-depth parameterization of Montiel

et. al. [20] is used for landmark representation, and the Atlas

framework of [4] is used to maintain local maps. The Joint

Compatibility Branch and Bound (JCBB) algorithm of [21]

is used for robust data association. Normalized graph cuts

will be used to find partitions to separate local maps which

balance map capacity while removing as little information

as possible.

A. Monocular SLAM

Davison’s early work in [9], [10], [8] showed that it

is possible to perform real-time SLAM with a commodity

monocular camera without the use of odometric or intertial

motion feedback. The real-time performance is accomplished

by projecting the covariance ellipse of the feature into the

image, which, by taking the 99% confidence level yields a

search region which can be examined to find the feature.

Since this region is much smaller than the overall image, the

template search is quick to yield an accurate measurement of

the feature. This can be done at full frame-rate which allows

1Andrew Davison has made the MonoSLAM software available at http:
//www.doc.ic.ac.uk/˜ajd/Scene/index.html

the use of an impulse motion model without any odometric

or intertial feedback.

B. Inverse Depth

The software used in this paper uses the core compo-

nents of SceneLib, but the two-phase feature initialization

is removed by using the unified inverse-depth parameteriza-

tion [20]. In the inverse depth parameterization, the feature

state in the filter is expanded from the 3 spatial coordinates

into a spherical coordinate system consisting of the origin of

the feature. which was the robot position when it was first

observed, the horizontal bearing θ, the vertical bearing φ,

and the inverse depth ρ.

Using this parameterization, the projection of the feature

into the camera is shown in equation 1. Please refer to [20]

for specific implementation details. This projection makes

use of the inverse depth of the landmark, which allows it to

be well-defined even when ρi = 0, when the depth is infinite.
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C. JCBB

The public version of MonoSLAM uses a simple indi-

vidual compatibility nearest neighbor data association gate.

This is fine for small motions and accurate poses and

unambiguous features, but in a more realistic setting in a

large scale robot trajectory a more robust data association

test is needed. The technique outlined in this paper makes

use of the Joint Compatibility Branch and Bound (JCBB)

algorithm due to Neira et al [21]. JCBB has been used with

MonoSLAM before in [6]; however, this development has

not been included in MonoSLAM so it was re-implemented

for this work.

D. Atlas

The approach described in this paper uses the Atlas frame-

work developed by [4], which is a technique for sub-mapping

based on computing the minimum uncertainty path to each

other frame using a modified form of Dijkstra’s shortest

path algorithm. Loop closure in Atlas is accomplished by

the addition of a link between local frames of reference

with a transformation which can be estimated through cor-

respondences between features in common between these

two map frames. Atlas is a technique for approximating

the true posterior map while maintaining near constant-time

performance. Local maps are formed when the capacity of

the previous map is filled with a pre-defined maximum

number of features. This capacity based partition choice

forms a cut which could potentially remove more information

than a more informed choice. A partitioning scheme which

minimizes the information removed from the map will gen-

erate a more accurate map than a scheme which arbitrarily

selects this partition. The choice of Atlas as a underlying

framework is merely an implementation detail; the use of

normalized graph cuts to find map partitions could be used

with any sub-mapping framework.

919



E. Normalized Graph Cuts for Image Segmentation

Normalized graph cuts was used by Shi and Malik to

provide better results than standard graph cuts on image seg-

mentation tasks in the presence of outliers [24]. Minimizing

the cost of the graph cut often consists of a highly unbalanced

partition where very few features will appear in one of the

sets, and the bulk will remain in the other. For making sub-

maps, this unbalanced partition is undesirable because it will

typically separate few features and fail to realize the benefit

of submapping. Instead of minimizing the cost of the cut,

Shi and Malik minimize the disassociation measure called

the normalized cut(Ncut):

Ncut(A, B) = cut(A,B)
assoc(A,V ) + cut(A,B)

assoc(B,V )

where cut(A, B) is the sum of all the weights of the edges

removed by this cut, and assoc(A, V ) is the sum of all the

weights of all edges connecting the set A to all of the vertices

in the graph. Finding a partition (A, B), A
⋃

B = V which

minimizes this Ncut(A, B) is the goal. Unfortunately, find-

ing this partition is NP-hard, but by relaxing the requirement

that set membership is absolute, and allowing a vertex to

be partly in one set and also partly in another, this can be

approximated by an eigenvalue problem. For completeness,

please refer to the source paper [24] for the details of this

computation and proof.

In terms of robot map building, normalized graph cuts will

be used to find better partitions of the state vector into subsets

which follow the typical compact block-diagonal structure of

the covariance matrix.

III. IMPLEMENTATION

For the implementation we have adopted the SceneLib

package provided by Davison [10], [9], [8], [11]. This pack-

age allows for rapid prototyping and it provides a reference

for evaulation of performance. The software used in this

paper has applied many of the advancements made to the

open-source SceneLib package which have been detailed in

the literature since its release in 2006. These advancements

include the inverse depth parameterization from [20], and the

sub-mapping technique Atlas from [4].

A. Monocular SLAM implementation

The intended application for SceneLib is that of perform-

ing SLAM on a monocular hand-held camera; with the addi-

tion of an odometric motion model, SceneLib can be made

to work more accurately. This enables the visual SLAM

algorithm to keep the small search regions for features even

during larger scale trajectories, which keeps the frame rate

high.

Monocular SLAM typically requires a two-phase feature

initialization process. The use of the inverse depth parame-

terization allows us to eliminate this two-phase initialization.

This reduces the complexity significantly and also allows

landmarks to be used immediately in the SLAM update.

A large depth uncertainty is placed on a new landmark –

one which includes infinite depth with significant probability.

The filter will be able to use this feature for correcting

heading errors when it is first observed, and once the feature

converges to a better estimate it will also help correct spatial

pose errors as well. The modular architecture of SceneLib

made the inclusion of the inverse depth parameterization a

simple process.

Despite the excellent performance of SceneLib in a small

environment, the algorithm suffers from quadratic update

complexity and will ultimately fail to maintain real-time op-

eration when presented with a larger environment. This issue

is addressed in the large-scale MonoSLAM implementation

of [6] which uses submapping with MonoSLAM with an

optimization step to align adjacent map frames based on

shared features.

B. Atlas implementation

Atlas leaves the choice of the loop-closure strategy open

to the user. The implementation in [4] finds landmark corre-

spondences and finds a robust transformation between their

local frames of reference using RANSAC. The robot used

in [4] is confined to a 2D plane and it uses a laser scanner to

collect landmark measurements. Unfortunately, a search for

corresponding landmarks does not extend well to the visual

SLAM world of 3D features and images. Visual features are

unlikely to be shared between two local maps. To adapt the

Atlas scheme to the visual SLAM domain, this paper has

employed the simple technique of projecting the features

from the reference frame with which the loop closure is to

take place into our current camera pose. This is accomplished

by computing the pose of the robot in the other reference

frame using the minimum uncertainty projection from Atlas

and also computing the uncertainty in the pose using the rule

given by J1(T
−1
ab , xb

v), which is the Jacobian with respect to

the first parameter of the composed transformation between

the two map frames and the robot’s current pose xb
v in

frame b, J2 is likewise defined as the Jacobian with respect

to the second parameter. The covariance of the composite

transformation can be computed using formula 2. More

details on the Jacobians J1 and J2 can be found in [26].

These are the same rules which are used in Atlas to compute

the uncertainty along a given set of transformations.

Σac =
J1(T

−1
ab , xb

v)ΣabJ1(T
−1
ab , xb

v)T +
J2(T

−1
ab , xb

v)ΣbcJ2(T
−1
ab , xb

v)T (2)

The current Atlas strategy for splitting maps is to build

a map until a finite capacity is reached. At this point, a

sub-map is created. This strategy is essentially equivalent

to making arbitrary cuts in the information shared between

features until a partition is formed. A better strategy is to

partition the set of features into smaller maps based on a

cut which minimizes the information lost. This strategy will

make a final a posteriori map which is closer to the ideal

unpartitioned map than the a posteriori map from capacity

Atlas.

Adapting the normalized graph cuts [24] algorithm from

the image segmentation community to be used for parti-

tioning robot map features is accomplished by determining
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that the affinity measure between features is the volume

of the information which connects them. This is a simple

computation from the information matrix, which is formed

by inverting the covariance matrix I = Σ−1.

The only terms of interest are the Iyiyj
terms which

measure the information shared between two features yi and

yj . The weight on the edge connecting feature yi to feature

yj is set to Wij =
∣

∣det Iyiyj

∣

∣ which measures the total

information shared between these two features, regardless

of their parameterization. Now the normalized graph cuts

algorithm can partition these two sets into balanced sets

which have the minimum information shared along the cut.

From [24], we set D to be the diagonal matrix with Dii =
∑

j Wij and then we can solve the eigenvalue problem:

(D − W )y = λDy

to find the real-valued eigenvector y corresponding to the

second-smallest eigenvalue γ. Thresholding the elements of

y gives a partitioning on the set of features: if y[i] > 0 then

feature yi is in set 1, and if y[i] < 0 then feature yi is in set

0.

C. Map Partitioning

The transformation between the old map and the new map

is initially set to the old robot pose and covariance in the old

map, just as with capacity based Atlas. The robot pose in the

new frame is set to zero, with zero covariance Σxx.

Unlike in capacity based Atlas, partitioning based on

normalized graph cuts requires actually splitting up an active

map two generate two sub-maps rather than simply starting

a new map. Fortunately, this just involves re-expressing the

features which will be carried into the new map frame in its

coordinate system, and transforming the covariance matrix

by this transformation.

Features yi which are to be moved from frame a to b

are transformed according to the rule yb
i = Taby

a
i Since

yi are expressed in a spherical ”inverse depth” coordinates,

this transformation involves re-expressing the origin in terms

of the new coordinate system b and rotating the horizontal

bearing θ and vertical bearing φ into the new representation.

The inverse depth coordinate ρ remains unchanged.

Feature covariance elements Σyiyj
are set to zero and are

removed if yi and yj fall into separate partitions. Σxyi
is

transformed according to the rule seen in equation 3

Σb
xyi

=
δxb

δxa
Σa

xyi

δyb
i

δya
i

T

(3)

The only type of covariance submatrix which remains is

Σyiyj
where yi and yj fall within the same partition (or are

the same element if i == j) in which case the transformation

rule is seen in equation 4.

Σb
yiyj

=
δyb

i

δya
i

Σa
yiyj

δyb
j

δya
j

T

(4)

Using these transformation rules, the new covariance and

state vectors can be constructed for the partitioned sub-map.

The robot is now able to proceed with its task using this new

local map.

IV. EXPERIMENTAL RESULTS

Fig. 1. Example proof-of-concept set up for Experiment 1.

Fig. 2. Result of normalized graph cuts on proof-of-concept. Each sub-map
is colored differently. The size of each blob corresponds to the associated
uncertainty in its location.

A proof-of-concept simulation was created to validate

the use of the normalized graph cuts algorithm for the

application of splitting up robot maps. This simulated world

is a typical 2D planar robot which makes range and bearing

measurements on a set of features, which are located on a

regular grid. An artificial ”wall” has been placed in the center

of the world which splits the features on the right half from

the features on the left half as can be seen in figure 1. This

wall prevents the robot from measuring features from the

opposite side, which approximates the effect of a wall in

the real world separating two rooms, whose features can be

independently measured and may be a good candidate for

partitioning into sub-maps.

In this initial proof of concept experiment, the partitioning

algorithm was able to immediately segment the features

according to the most natural partition suggested by the wall.

This result can be clearly seen to correspond exactly to the

wall in figure 2.

The input for the second experiment is camera data

and odometry from a Pioneer PeopleBot moving through

different trajectories in our lab. The results from two tra-

jectories are shown below, the Foyer trajectory and the
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V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Traditional approaches to SLAM are limited by a quadratic

complexity. To address this problem, sub-mapping ap-

proaches have been suggested. These methods typically

apply a heuristic for the partition selection. In this paper

we have presented the use of normalized graph cuts as a

methodology for the partitioning of sub-maps. The appli-

cation of normalized graph cuts for map partitioning has

been demonstrated in the context of monocular SLAM. The

proposed method has been implemented in an extension to

SceneLib. Experiments using both simulation and real data

clearly indicate that this method generates maps superior to

ad-hoc partitioning strategies. Consequently, the method pro-

vides a theoretically sound basis for SLAM using sub-maps

and as such, directly addresses the complexity challenge.

B. Future Works

Other research groups have established excellent progress

in sub-mapping with the full SLAM, so one might wonder

why we would continue to pursue EKF based approaches to

SLAM sub-mapping. The answer to this is that our technique

enables a robot to not only partition out independent features

in a map from one another, but also potentially establish

which features are more dependent. Our long-term research

goal is to establish a hierarchy of features to be used for

SLAM, with simple visual features on the lowest level and

objects on a higher level and perhaps rooms or buildings

on the highest level, inspired by Kuipers’ Spatial Semantic

Hierarchy [19]. One way of determining which features

might admit a higher level representation would be to use

this normalized graph cuts algorithm to partition low level

features according to shared information and then place a

higher level representation on this set of features which will

reduce the complexity of the mapping task. These covariant

features offer little marginal improvement in the robot’s

localization task since they are highly correlated with the

other features, so they can be safely grouped into a higher

level construction. Single cluster partitioning from [23] could

be used to identify objects or other highly correlated regions

which could support segmentation and representation with a

higher level object model.
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